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Inspired by human perception, a novel framework for dynami-
cally allocating algorithmic and computational resources to achieve
variable precision tracking of extended objects is presented. Proba-
bilistic object relevancy metrics reflect the priority of each tracked
object to the consumer of the tracking output, and are leveraged
to trigger mode transitions in a hybrid system implementation of
the proposed priority-based framework. In this way, the bulk of the
algorithmic and computational resources are reserved for tracking
objects of highest priority with high-precision methods, while low
priority objects are tracked with inexpensive, qualitative methods.
An example implementation of the proposed framework is provided
for an autonomous driving application, in which the consumer of the
tracking output is an anticipatory path planner. Simulation results
demonstrate the ability of the framework to automatically trade
computational complexity for tracking precision as a function of an

object’s priority to the tracking consumer.
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1. INTRODUCTION

Humans consistently outperform robots in percep-
tual tasks despite certain hardware advantages favoring
robots over humans; this suggests that human cognition
is superior to analogous robotic algorithms in these ar-
eas, and potentially worth emulating. For instance, sen-
sors providing metric information over a wide field-of-
view (FOV) are readily available for robots, while hu-
man sensors provide ordinal information, at best, over a
limited FOV. In fact, empirical studies have concluded
that human vision provides ordinal information via a va-
riety of visual cues, such as occlusion, binocular dispar-
ities, and motion parallax, which the human brain fuses
into a single cohesive belief of the perceptual space
[12], [13], [25], [27]. As distance from the observer
decreases, the number, type, and quality of available
ordinal cues increases, and the human belief quickly
converges from an imprecise ordinal representation to
a precise metrical one, despite purely ordinal sensor in-
formation.

As with many other biological phenomena, the char-
acteristic of human perception described above serves as
a complement to most human ventures, in that humans
typically only require detailed, metrical representations
of the nearby scene in which they are currently an ac-
tive participant; therefore, anything more than a general
ordinal awareness of objects at greater distances is, at
the very least, a misallocation of limited cognitive re-
sources, and a precursor for distraction.

Given that computers/robots with finite computa-
tional resources are often employed to perform human
tasks such as navigation or driving, many of the re-
quirements of human perception discussed above apply
equally well to computer/robotic perception. However,
analogs to the complementary human perception char-
acteristics are largely absent from robotic algorithms.
Therefore, inspired by human cognition, this work pro-
poses a priority-based framework for allocating algo-
rithmic and computational resources as a function of
priority in extended object tracking (EOT); the auto-
matic allocation of computational resources as a func-
tion of priority is a novel contribution to the EOT field.

Object tracking is a perception application in which
the states (e.g. kinematics) of objects present in the local
environment are estimated from sensor data. Extended
objects are defined as objects of non-negligible size
relative to the sensor resolution, such that they cannot
be accurately modeled as a mathematical point. EOT
differs from traditional object tracking in that it violates
the foundational assumption that each object can return,
at most, a single measurement per sensor query. Further,
extended objects cast shadows in sensor data, known
as occlusion shadows, which result in incomplete or
missing measurements of the objects of interest—this
includes self-occlusion, in which the object surface
nearest the sensor occludes its remaining self. While the
proposed priority-based framework is general enough to
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precision, which tend to be directly correlated.

consider any EOT methods, the authors are particularly
interested in the general case in which the extended
object size and shape is unknown a priori. Therefore,
tracking approaches that rely on this information, such
as spatial distribution models [14], are not included in
the following discussion of prior work.

Various successful approaches to extended object
tracking in the absence of a priori shape information
have been proposed, spanning a spectrum of computa-
tional complexity and tracking precision. Two central
and related factors determining an EOT algorithm’s po-
sition on this spectrum, are the detail and accuracy of
the object shape/extent model. Specifically, detailed and
accurate knowledge of object shape/extent enables high
fidelity sensor models that offer a precise and detailed
interpretation of the sensor data, and its relationship to
the object state. In this way, detailed and accurate ex-
tent models engender high precision tracking, generally
at the expense of increased computational complexity.
Fig. 1 depicts a generalization of this trade-off, patently
distilled for the following discussion of prior work.

At the low complexity end of the spectrum, qualita-
tive/topological object tracking approaches exist, where
the object state definition itself is imprecise by nature.
For example, the state could be defined as a single dis-
crete random variable representing the region of space,
or topological node, that a dynamic object occupies over
time. Qualitative state representations have gained inter-
est in robotic applications due to their efficiency, scal-
ability, and natural synergy with inexpensive ordinal
sensor information, such as that provided by monoc-
ular cameras or human input [28]. In a conceptually
related approach, traditional static occupancy grid map-
ping concepts have been extended to characterize dy-
namic scenes [2], [32]. These approaches tend to be ex-
tremely efficient, but their qualitative/topological state
representation is too imprecise for many applications,
such as those requiring agents to safely interact with
other dynamic objects.

Moving along the spectrum toward higher precision,
simple parametric object shape models are prescribed
a priori, and the parameters of the model are jointly es-
timated as states in the object tracker. Common simple
parametric shapes include circular discs [6], ellipses [5],
[71, [10], [23], [24], and rectangles [8], [26], [31]. These
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simple shape models generally represent a tight enclos-
ing bound or circumscription of the true, more complex,
underlying shape, rather than the shape itself; therefore,
they are sufficient for tracking a variety of arbitrarily
shaped objects without a priori knowledge of the object
shape or size. However, the inherent, uncharacterized
mismatch between the true underlying object shape and
the simple prescribed circumscription restrict the sen-
sor model fidelity, thereby degrading tracking precision.
This degradation is mitigated somewhat by increasing
the complexity and flexibility of the shape bound, which
is the goal of star convex random hypersurface models
(RHM) [9]. These models are appropriate when detailed
a priori information about object shape and size is un-
available, and computational efficiency is at a premium.

A simple and intuitive method for tracking arbitrar-
ily shaped extended objects involves the use of occu-
pancy grids anchored to an object-centric coordinate
frame, dubbed Object Local Grid Maps (OLG) [3].
OLG shape models can be rigorous and flexible, how-
ever, the precision and complexity depend on an ap-
propriate choice of grid extent and resolution, which
requires some a priori knowledge of the size and shape
complexity of objects to be tracked.

Finally, at the high precision end of the spectrum,
very detailed, non-parametric point cloud models are
employed [18]-[20], [29], [30], [34]-[37]. These mod-
els are extremely flexible in providing rich, 2 or 3-
dimensional (3D) renderings of the true underlying ob-
ject surfaces for arbitrary shapes, and often do not re-
quire a priori information about the object shape and
size. These detailed surface representations enable high
precision sensor models, which, in turn, contribute to
high precision kinematic state estimates; all at the ex-
pense of high computational complexity. Therefore,
these methods are appropriate when tracking precision
is at a premium, a priori information about object shape
and size is unavailable, and computational resources are
abundant.

Akin to human perception, within a given EOT ap-
plication the relevance of each object to the consumer
of the tracking output, henceforth referred to as the con-
sumer, may vary from object-to-object or from instant-
to-instant. For example, in a surveillance application,
objects exhibiting anomalous behavior may be more rel-
evant than those exhibiting benign behavior; in naviga-
tion, nearby objects may be more relevant than distant
objects; or in a pursuit application, the lead object may
be more relevant than other followers. In these cases, the
EOT requirements may also vary with object relevance,
deeming a single appropriate EOT method difficult to
identify.

This work addresses this issue by proposing a
priority-based tracking framework for extended objects,
where priority refers to the object’s relevance to the
consumer. The proposed framework is implemented via
a hybrid system model in which each discrete mode
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represents a different EOT method with unique charac-
teristics on the complexity-precision spectrum of Fig.
1. Further, probabilistic object relevancy metrics are
designed to reflect the time-varying priority of each
object to the consumer, and leveraged to inform the
hybrid system switching strategy. In this way, objects
most relevant to the consumer are allocated more re-
sources and tracked with higher precision, while ob-
jects of peripheral relevance are efficiently accounted
for with minimal computational burden. To demonstrate
the ability of the framework to prioritize objects by
automatically trading computation for tracking preci-
sion, an example implementation of the hybrid frame-
work is provided for an autonomous driving applica-
tion in which the consumer is an anticipatory plan-
ner.

Section 2 formally defines the general object track-
ing problem, Section 3 introduces the proposed hy-
brid system implementation of the priority-based EOT
framework, Sections 4 and 5 provide an example imple-
mentation of the hybrid framework for an autonomous
driving application, Section 6 presents a discussion of
simulation results, and finally 7 provides some conclud-
ing remarks.

2. OBJECT TRACKING PROBLEM FORMULATION

The goal of general multi-object tracking is to es-
timate the full latent object state history, X,.,, of an
unknown number of maneuvering objects, N, from a
history of noisy observations, Z,.,, without knowledge
of object controls or intent. Probabilistic inference pro-
vides a rigorous means for accounting for the many
sources of uncertainty in the problem, deeming it a valu-
able tool for multi-object tracking. Specifically, rather
than estimating the latent variables directly, inference
methods estimate the joint posterior probability distri-
bution over the latent variables conditioned on the ob-
servations,

No
p(Xll::;(vo |Zl:l() = HP(XT;]( |ZI:K’X11::I§71)

n=1

(1)

from which optimal estimates of state trajectories, X 11::1’}'0 S
can be computed via existing techniques, such as Min-
imum Mean Square Error (MMSE) or Maximum-a-
Posteriori (MAP).

In most practical applications, it is accurate to model
the objects as being mutually independent, p(X7x |
X') = p(X{'.x) VYn # m, which is convenient in that it
simplifies the full joint multi-object tracking problem
into the product of single-object marginals that can be
studied independently in parallel:

No
p(Xllz:évO | Zx) = HP(X{Z:K | Zyx)

n=1

@)
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Fig. 2. Graphical representation of the Hidden Markov model
(HMM) used to represent the single-object tracking problem.
Shaded nodes denote observed variables, and unshaded nodes

denote the hidden, i.e. latent, variables to be estimated.

Therefore, theoretical development in object tracking is
commonly focused on the single-object tracking prob-
lem, i.e. estimating:

PXik 1 Z1 k) (3

Further, computation of the posterior in (3) is made
tractable, efficient, and deterministic via the following
conditional independence assumptions, which gives rise
to the Hidden Markov model (HMM) depicted graphi-
cally in Fig. 2:

P | X Zp) = p(Z | X)) VE#k

P 1 X 1. X ) =X | X)) V> “4)

Lastly, online tracking applications require state esti-
mates in real-time as data is received, and are often prin-
cipally concerned with the current object state, rather
than the full time-history. Therefore, the inference prob-
lem is further simplified to estimating:

pPX | Zyp) Vke{l,....K} (3)

That is, the marginal distribution over the states at any
time, k, is conditioned only on the observation history
through k.

Given the HMM of Fig. 2, (5) can be computed
recursively at each time step via the following two step
process:

1) Prediction step: the posterior state belief at the pre-
vious time step, p(X,_ ;| Z,«_,), is propagated for-
ward in time via the prescribed stochastic object dy-
namics model represented by the transition density,
p(X;_;,X,). The result is the prior state belief at the
current time step: p(X, | Z,.._1)-

2) Update step: the prior state belief at the current
time step, p(X, | Z,.+_,), is updated with the current
observation via the prescribed stochastic measure-
ment model represented by the observation density,
P(Xi.Z,). The result is the posterior state belief at
the current time step: p(X, | Z,..)-

Estimating (5) is commonly referred to as filter-
ing, which can be supplemented with smoothing to esti-
mate the full posterior distribution over the state history
in (3).
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Fig. 3.
G and I denote the guards and invariants governing the discrete
mode transitions.

Hybrid model of the proposed tracking framework, where

3. ESTIMATION FRAMEWORK

As discussed in the introduction, human visual per-
ception degrades from a precise metrical representation
to a rough ordinal one as distance from the observer in-
creases; this is a direct consequence of the diminishing
quality and availability of ordinal visual cues, and an
evolutionary advantage given finite cognitive resources
and the relative importance of close objects compared
to distant ones. In characterizing this phenomenon, cog-
nitive scientists have discretized perceptual space into
three distinct regions defined by distance from the hu-
man observer. Specifically, in order of decreasing dis-
tance and improved convergence to a metrical repre-
sentation: Vista space, Action space, and Personal space.
In human trials, the distances to the boundaries divid-
ing these regions were found to depend on a variety of
variables, including the quality of the observer’s vision,
and characteristics of the particular scene, e.g. clutter,
object familiarity, and scene geometry [13] [12].

Many natural analogies exist between human and
robot/computer perception; both operate under resource
constraints (cognition vs. computation), and both uti-
lize sensor information that often degrades with dis-
tance from the observer, to name only two. Given these
analogies, and the fact that computers/robots are often
designed to perform human tasks, such as surveillance
or navigation, a priority-based tracking framework in-
spired by the human perception concepts of attention
and focus is proposed here, which automatically trades
computational and algorithmic resources for tracking
precision as a function of object relevance to the con-
sumer of the EOT output.

Fig. 3 depicts the hybrid system model designed to
implement the proposed priority-based EOT framework.
Each discrete mode, Vista, Action, and Personal, repre-
sents a unique EOT approach chosen from the left, cen-
ter, and right, respectively, of the complexity-precision
spectrum depicted in Fig. 1. Further, probabilistic object
relevancy metrics inform the mode switching strategy
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such that, as an object becomes increasingly relevant
to the consumer, the tracker transitions along the path:
Vista — Action — Personal, causing the overall track-
ing framework to transition from left to right on the
spectrum depicted in Fig. 1. In this way, objects most
relevant to the consumer are allocated more resources
and tracked with higher precision, while objects of pe-
ripheral relevance are efficiently accounted for with in-
expensive EOT methods.

The parameters of the hybrid system model of Fig.
3, i.e. the modal EOT methods and object relevancy
metrics, should be chosen to reflect the specific EOT
application and goals motivating the use of the pro-
posed priority-based framework. In this way, the op-
timal parameterization of the proposed priority-based
framework in Fig. 3 is highly application and consumer
dependent, and therefore beyond the scope of this work.
However, for demonstration purposes, an example pa-
rameterization for an autonomous driving application
is provided in the coming sections, coupled with some
discussion of equally valid alternatives. For this exam-
ple, the consumer of the tracker output is an anticipatory
planning routine tasked with planning control inputs to
safely progress the vehicle toward its destination. In this
vein, the consumer defines object priority in terms of its
potential contribution to the current plan. Specifically,
while all objects in the local environment are considered
when planning a future path, those that have potential
to violate the planner’s safety requirement are of the
highest priority, i.e. those that pose an immediate risk
of collision, followed by those with potential to violate
the planner’s liveness requirement, i.e. those that inhibit
the ego-vehicle’s progress toward the goal location.

While beyond the scope of this paper, the hybrid sys-
tem framework depicted in Fig. 3 can also be outfit to
address alternative tracking goals. For instance, consider
the goal of achieving tracking robustness. An EOT ap-
proach robust to occlusion could be selected when driv-
ing in a cluttered environment, e.g. [1], [15], [34], [35],
[37], while an alternative approach may prove prudent
when the clutter subsides. In heavy traffic, cars could
be tracked in groups rather than individually, e.g. [24],
or EOT methods that account for the inherent correla-
tions in the behavior of the traffic participants could be
developed; i.e. by omitting the independence assump-
tion leading to (2). Further, the model can be outfit
to transition according to ability-based (or other) met-
rics, rather than object relevance. For instance, general
object trackers, such as those discussed in the intro-
duction, can be leveraged at object track initialization
when specific static attributes of the object, such as ob-
ject type or class, are unavailable; then, as estimates
of the static object attributes converge, the system can
transition to more specific, ad hoc, trackers designed to
leverage information inferred from the estimated object
attribute. Alternatively, a unique synergy may exist be-
tween EOT approaches and available senor types; for
instance, dense 3D colored point cloud approaches, e.g.
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TABLE I
Suggested modal tracking methods

Vista Space Action Space Personal Space

Nonparametric

Qualitative Parametric Bound Surface

e Circular Disk [6]
e Ellipse [5], [7],
[10], [23], [24]

e 2D Point Cloud
[29], [30], [34]-[37]
e 3D Point Cloud

e Temporal
occupancy grid [2]
e Markov chain

occupancy grid [32] e Rectangle [8], [18]-[20]
e Topological [26], [31] e 3D Surface
e Star Convex Reconstruction
RHM [9] e.g. KinectFusion [21]

[18]-[20], perform well in regions of space where the
field-of-view (fov) of a color camera intersects the fov
of one (or more) lidar sensor(s). In cases such as this,
transitions can be triggered as objects enter and exit the
fov of different sensors, or areas of multi-sensor over-
lap, leveraging the identified synergistic sensor-tracker
pairings.

4. MODAL TRACKING APPROACHES

The focus of this work is to invoke high precision
EOT methods for objects that are relevant to the con-
sumer, and inexpensive EOT methods for objects that
are of peripheral relevance. Therefore, the Vista, Action,
and Personal space models are chosen from the left, cen-
ter, and right of the tracking spectrum presented in Fig.
1, respectively. A partial list of existing EOT approaches
appropriate for each mode is provided in Table I, and
those chosen for the autonomous driving example are
presented in detail in the coming sections.

Note that, while not a requirement of the priority-
based EOT framework, all measurement models chosen
for the autonomous driving example correspond to sen-
sors providing (potentially multiple) position/distance
returns per query, such as lidar, radar, or binocular/RGB-
D cameras. Throughout the paper, an unadorned Z,
denotes the raw position measurement, or set of mea-
surements, at time step k, while superscripted variables,
ZY'MP | denote a particular interpretation of the raw data
(e.g. metadata, or summary statistics) leveraged by the
sensor model associated with the hybrid mode identified
in the superscript.

4.1. Vista Space Model

Vista mode is reserved for objects with the most pe-
ripheral significance to the consumer; a general aware-
ness of objects in Vista space is useful, but the computa-
tional resources required for detailed object tracking are
better spent elsewhere. Further, similar to human sen-
sors, robot sensor precision/resolution often degrades
with distance from the sensor (e.g. the spatial resolu-
tion of a spinning lidar); in these cases, the tracking
precision also degrades with distance from the sensor
regardless of the chosen tracking algorithm, and thus the
benefits of ‘high precision” methods are limited. To this
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_1-
Far Left

Far Right

.
Ego Vehicle Direction of Travel”

Fig. 4. Qualitative abstraction of the perceptual space of the ego
robot. Left: Eight qualitative discrete states comprised of two range
sets and four bearing quadrants. Right: Graphical model
representation of the available transitions between the qualitative
states of the discrete abstraction. Dashed arrows denote transitions
enabled by the discrete time nature of the filter driven by the finite
temporal resolution of the sensor.

end, the perceptual space surrounding the ego-vehicle
is abstracted into the eight disjoint discrete qualitative
states depicted in Fig. 4 (left), the topology of which is
encoded in the state transition diagram in Fig. 4 (right).
Each qualitative state, X;', is parameterized by a bear-
ing and a range interval, IB%ka and kav, respectively, de-

fined as:
o v 1 1
Byy = 5'{Xk * {‘z’ 5)}
[0, p) if XY € Near
Ryy ={ _ oy (6)
k [p, oo) if X, € Far

where p is the user-defined range boundary between
‘Near’ and ‘Far’; i.e. the circle in Fig. 4 (left).

Qualitative state representations have gained inter-
est in robotic/computer applications, such as relational
mapping [28], due to their efficiency, scalability, and
natural synergy with inexpensive ordinal sensor infor-
mation, such as that provided by monocular cameras
or human input. The qualitative states depicted in Fig. 4
are chosen because of their similarity to human account-
ing of objects in the Vista space of human perception;
common robotic sensors provide this information di-
rectly (i.e. bearing and range), eliminating the need for
intricate interpretations of the data, such as reasoning
about object shapes and surfaces. The object state in
Vista space, X;', is then an integer denoting the quali-
tative state of the object at time k, the belief of which,
p(XY | Z,.,), is distributed according to a categorical dis-
tribution.

4.1.1. Belief Prediction:

Minding the conditional independence rules defined
in (4), the posterior categorical distribution over the
object state at time k — 1 is predicted forward to time
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k as follows:

P(X/y | Zy 1) = ZP(XIXPXIY | Zyx1)

v
Xk—l

= ZP(XI?/ | X DPG | Zygey) (D)

X
where p(X}' | | Z,,_,) is the posterior state distribution
attime k — 1, and p(X}Y | X} ,) is the symmetric discrete

state transition density defined over the transition graph
on the right of Fig. 4:

LY 1xY )
S LY XY

pXY | X)) = ®)

where the conditional likelihood function is defined as:

Ly ifi=y
L., ifixay
LY =0 X == o i ®)
=) J
0 ifi4y

and i, <, and <1 denote adjacency, non-adjacency, and
diagonal adjacency of qualitative states (Fig. 4 left),
and appear as solid, missing, and dashed edges between
graph nodes in Fig. 4 (right), respectively. When applied
to the graph in Fig. 4, the conditional distribution in (8)
is depicted as the following symmetric, positive definite
matrix:

P(X/y | lefl) =

X!
(71 P 0 P P P 0 Py
P Pt P O Pz P Pz O
0 P P11 Px 0 Pz P P
v P 0 P D1 1 0 P P
Xk—]
P P 0 pz i P 0 Py
5 P P 0 Py PP O
0 Pz P P 0 Py P1 P
P 0 Pz P Pw O D Pr
(10)
where:
£
(11)

PO = ¥ 3L, v 2L

Conceptually, the likelihoods, L(_), can be set according
to the relative area of the boundary associated with each
type of transition, giving: £y > L > L.

4.1.2. Belief Update:
Minding the conditional independence rules defined
in (4), the prior categorical distribution at time k, (7),
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is updated to reflect the observation at time k via the
following equation:

p(XIy’Zk |lek71)
PZ | Zy g 1)
p(Z |X1y)‘P(X1y |lek—l)

= (12)
Zikvzlp(zk |X1<V)'P(X1y |Zl:k71)

where p(X,?’ |Z,,_;) is the prior computed in (7).
The conditional measurement likelihood, p(Z, | X\Y), is
found by counting the sensor returns from the discrete
region of space corresponding to X,', parameterized by
the bearing and range intervals defined in (6):

P [ Z1y) =

s

PZ | X)) = (B, €By)N(p, € Ryy)
/=1

(13)

where 3, and p, denote the bearing and range to sensor
return z, € Z, V¢ € {1,...,n; }. Note that the argument to
the sum in (13) evaluates to 1, for points that lie within
the discrete region of space corresponding to X;', and
0 for those that do not; in this way, (13) counts the
observations supporting qualitative state X" .

4.2. Action Space Model

Action mode is reserved for objects of increasing
significance to the consumer. For the autonomous driv-
ing example, these objects have a significant impact on
the planning routine (i.e. the consumer), but are not at
an immediate risk of collision [16], [17]. Therefore, a
reasonable estimate of the object’s position, velocity,
and approximate size are desired to effectively antici-
pate their future behavior, and effectively plan around
them. To this end, the extended object tracking approach
chosen for the action space in the autonomous driving
example is the random matrix method introduced in [23]
and studied further in [24] and [5]. For the random ma-
trix approach, the object state in action space at time
k, X{*, is defined as a random vector representing the
objects position and velocity in the motion plane:

X

y

A _
Xk - .
X

(14)
v
and the object extent in the motion plane is modeled
as an ellipse by way of a symmetric positive definite
random matrix, E;:

e. e
_ | & Gy
E, = |: :|
Cyx Gy dk

The tracking problem in (5) is then to estimate the
joint distribution over the object state and elliptical
extent given the history of measurements, Z,;:

15)

P(X?’Ek | Zy4) (16)
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The joint distribution in (16) can be factored exactly into
the product of vector and matrix valued distributions:

P(X?,Ek | Zyp) = P(XI? |Ee.Zy 0P Ey | Z,4)

where p(X2 | E,.Z,,) is the vector valued distribution
over the object state, modeled as a multivariate Gaus-
sian, and p(E, | Z,,) is the matrix valued distribution
over the elliptical object extent, modeled to be inverse
Wishart:

a7

P(XI? |E.Zyy) =
P(Ey | Zi)=W

Thus, the posterior distribution in (16) is fully specified
by the Gaussian mean, X;*, and covariance, P¢, coupled
with the inverse Wishart scale matrix, ¥,, and degrees
of freedom, a.

The inverse Wishart distribution serves as the con-
jugate prior for the covariance matrix of a multivariate
Gaussian. Further, the mean, E,, variance of the (z, j)th
element, (al’c"/k)z, and covariance between the (z, 7)th and

(¢,m)th elements, a,((l",'(’)’([""), of the extent matrix belief,

pE, | Z,.,), are computed from the inverse Wishart pa-
rameters as:

NXEPOO

(W ) (18)

(ak‘k —d+ 1)(1/};((/()2 + (ak‘k l)wszwk‘k

2
(o k\k) (ak‘k *d)(ak\k _
wkuﬂ/’ﬁ\f + (o —d - Dwiﬁ’ﬁcwm + w/i\'zwk\k)
(O — D) —d — (g —d—3)
(20)

d— 1)2(% —d-3)

(1 D(lm)
Tklk

where d is the dimension of E; (d =2 in this case).

4.2.1 Belief Prediction:

The kinematic states evolve according to a stochastic
continuous time differential equation model of the form
in (66) provided in Appendix A. Therefore, the Kalman
filter prediction equations in (69) are used to compute
the mean and covariance of the prior state belief at
time k:

PXE | Zyy 1)_N(Xk\k I’Pk|k 1) 2D

The dynamics model matrices, F{* and G2, are defined
as a function of the ego vehicle rotation matrix, M5,

gk
and its time-derivatives:
FA = 02 x2 12 x2
k (Mego)TMego 2(Meg0)TMego
0
G = { 22 } 22
k (Mego)r ( )

[l

where subscript ‘g’ indicates that the variable is de-
scribed in a global coordinate frame, and superscript
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‘ego’ denotes that the variable pertains to the ego vehi-
cle dynamics, and is provided by an independent lo-
calization routine on-board the ego vehicle. The ego
vehicle rotation matrix and its time-derivatives are de-
fined as:

- cos gbego —sin (bego
k=
¢ sin ¢eg° cos qﬁego
ego
‘rego gk ego
ek — a¢ego
ego
\ 7€20 _ gk “ego ego((bego)z (23)

2.k ) ¢ng .k

The process noise represents the object acceleration in
the ego reference frame, which is assumed to be driven
by the following Gaussian white noise process:

xego
([} )
Ve k

The elliptical object extent evolves according to the
following rotation, accounting for the changing perspec-
tive of the ego-vehicle:

(24)

B, = ME3E, (M2, (25)

where M}, is a rotation matrix accounting for the
change in orientation of the ego-vehicle from k£ — 1 to k:

N lcosweg" Opi)  —SIn(EE — &%)
Ak T
P Lsin(egk — o) cos(a — dg )
(26)

Therefore, the parameters of the inverse Wishart
distribution are predicted over the time interval, 6, using
the following equations:

€go ego \T
\I’k\kfl - Mg Ak‘Ilkfl\kfl(Mg,Ak)

—ot
Q-1 = €XP (T) (_jpo1 —2) +2 27)

where 7 is the user-defined time constant governing the
rate of change of the object extent.

4.2.2. Belief Update:
The measurement of objects in action space is de-
fined as an observation of the object centroid:

sz

k/l

(28)

where z{ V¢ € {1,...,n}} are the individual raw sensor
returns at time k. The measurement in (28) is mod-
eled as:

Zd =HXP + 1,

H=[L,,0,] (29)
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where the measurement noise is defined as:
v, ~N(0,,R,)

Rk\kfl =0, +RY (30)

where R2 is the measurement noise covariance of each
individual sensor return, which is typically provided by
the sensor specification. Notice that the sensor uncer-
tainty reflected in (30) is bloated by the object extent
scale matrix, ¥, ,, thus tracking precision degrades
for large objects.

Given the sensor model in (29), the measurement re-
lated parameters of the joint Gaussian distribution over
the object state and measurement in (71) are given as:

1 -
P} = HP;;HHT + n_;R"‘H

Pﬁk\k—lzk = PkA\k—lHT 3D

and the Kalman filter equations in (73), provided in Ap-
pendix A, are used to compute the posterior distribution
over the object state in (17) and (18):

PX B Zy ) = N PR (32)

The parameters of the inverse Wishart distribution
are updated to get the posterior distribution over the
object extent in (17) and (18),

PENZ) = Wﬁl(\I’k\k’akM) (33)
using the following equations:
1 N A
Yy = a_(ak|k71‘1lk\k—1 + Nyt + Bpe)
K|k
e = Ot + Mg (34)
where
Nk\k—l = Tk\k—lNk\k—lTkT\k—l
S = S ZE (35)
and:
Nk\k—l = (Zl? *Zﬁk—l)(zf? *Zl?\k—l)T
My
=) @z -2
=1
1/2 _
Tk\k—l = \I’k\éfl(P?k) =
= 12 512
Sklk—1 = ‘I’k\k—le\kfl (36)

Matrix square roots when computing T, _; and =,
in (36) are computed via the Cholesky factorization.

4.3. Personal Space Model

Personal space is reserved for objects with para-
mount relevance to the consumer; for the autonomous
driving example, these are objects deemed to be at

218

immediate risk of collision. For this reason, precise
estimates of object kinematics and occupied space are
critical for safely interacting with objects in personal
space, deeming the tracking approaches chosen for Vista
and Actions spaces insufficient.

For the autonomous driving example, the personal
space object state is defined as the position, velocity,
and orientation of the object relative to some arbitrary
initial orientation, described in a coordinate frame fixed
to the ego-vehicle centroid:

XP = (37)

Lok

Note that the orientation, ¢, is decoupled from the object
heading, tan~!(x/y), to accommodate arbitrary objects
with a variety of latent motion constraints.

The object extent, X, is modeled as the most recent
lidar scan returned from the object at each time step,

p(Xk | Zl;k) = N(Zk,Rk) (38)

effectively maintaining a detailed, non-parametric, rep-
resentation of the immediately visible object surface over
a single time step.

4.3.1. Belief Prediction:

Given that the first four object states in (37) are
identical to X* given in (14), they evolve according to
the same model. The additional state, the orientation
of the object, evolves according to the following scalar
differential equation:

Ok = bk — gk
Therefore, the parameters of the prior distribution at k,

P(XIF | Zygoy) = N()_(ng—l’Plfc’\k—l) (40)

(39)

can be computed using the Kalman filter equations
in (69), provided in Appendix A, using the following
model:

FA 0 o
Ff _ [ k 4 1}
01x4 0
GA 0 o
GE _ [ k 2 1}
01x2 -1
WP~ NWE,QD) (41)
where:
_ wA
VVkP = [ 'ekgo‘|
Doy
Q 0,
Q]l: - k 2x1 (42)
0., Dy
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The object is assumed to be a rigid body, thus the
object extent, Y, is propagated forward in time via the
following rigid body transform:

Xi = M]Zl[SCk(kal _ n]il(l)ck) + ]}(Block (43)

where:
COS(¢J< - ¢k—1)
sin(¢ — ¢_1)
Block Xk
]L o = 1;1;7]><1 ® |:yk]
® denotes the kronecker product, and (x,y,,¢,) refer
to the position and orientation object states in (37).
The parameters of the prior distribution over the object
extent at k,

PO Zygy) = N(;(k\k—l’PXk‘k,l)

can be computed with the Sigma Point Transform [22].

—sin(@y — ¢ 1)

MBlock =1. ® l:
Ak me_ cos(¢ — &y_1)

(44)

(45)

4.3.2. Belief Update:

The measurement of objects in personal space is
inspired by [29], [30], and defined as an observation
of the extremities of the object:

cW
k

ﬁ;(:cw
Pk

where G;Y, 5V, and p, denote the clockwise and coun-
terclockwise most bearings, and the minimum range to
the object. The measurement model corresponding to
(46) is defined as:

Z; = (46)

Z8 = h(x,) + (47)

where x, is the extent model, and A(-) is a function
extracting the measurement metadata in (46) from x;.

The measurement related parameters of the joint dis-
tribution over the measurement metadata, Z, P and object
state, X7, in (71), specifically, Z}, PZ, and P;"kfl 7,0 are
computed from the prior distributions over the state,
(40), and object extent, (45), using the Sigma Point
Transform [22]. Finally, the parameters of the posterior
state distribution,

P | Z1y) = N(XE P (48)

are computed with the Kalman filter update equations
in (73), and the distribution over the object extent is
updated with (38); i.e. replacing the prior extent belief
with the most recent lidar scan.

5. MODE TRANSITIONS

The mode transitions among, Vista, Action, and
Personal spaces, depicted in Fig. 3, are fully defined
by their guards, G, and invariants, [, informed by the
object relevancy metrics, as well as the state transition
functions of the form, X; = g Pl(X,ﬁ), which transform

PRIORITY-BASED TRACKING OF EXTENDED OBJECTS

TABLE II
Example relevance-based metrics

Relevance definition Associated Metric

e Proximity e Distance to object
e Danger e Probability of collision
e Anomalous/erratic behavior e y2 test on tracker innovations
e Object of interest e Object recognition probability

the state belief from the source mode representation, jJ,
to that of the destination mode, 1.

In hybrid system theory, the invariants are a set of
conditions that must be satisfied for the system to op-
erate within each discrete mode. This is in contrast to
the guards, which are a set of conditions that must be
satisfied to invoke each discrete mode transition. For
the autonomous vehicle example, the hybrid system of
Fig. 3 is deterministic; i.e. the invariants are chosen to
be perfectly aligned with the guards, such that, at any
given instant, there is a single valid mode of operation,
and all 3 modes are reachable. The focus of this work
is to invoke high precision EOT methods for objects
that are relevant to the consumer, and inexpensive EOT
methods for objects of peripheral relevance. Therefore,
metrics informing the guards and invariants should be
chosen to reflect a measure of the consumer’s definition
of object relevance. A list of example relevance defini-
tions coupled with suggestions for relevancy metrics is
provided in Table II. The definitions and metrics chosen
for the autonomous vehicle example are presented in the
following sections along with their associated guards,
invariants, and mode transition functions.

5.1. Vista < Action

5.1.1. Probabilistic object relevancy metric:

For the autonomous driving example, the relevancy
metric informing transitions between Vista and Action
modes is chosen as the probability that the object is ‘Far’
from the ego-vehicle, p(Far, | Z,,); ‘Far’ is defined by
the discrete abstraction in Fig. 4, as the object occupying
any of the first four qualitative states. Therefore, the far
probability metric is computed as:

4
pFar, [Z, ) =p U X Z4
XV=1
4
=3 XY 121 (49)

V-
xY=1

where the equality of the first and second lines of (49)
is conditioned on the fact that the qualitative states
are disjoint. For the transition from Vista to Action,
V—A, p(XY |Z,,) is the current state belief posterior
computed during the measurement update step. For the
reverse transition, V—A, p(X | Z,.,,) is computed from
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(12) with a uniform prior over the qualitative states, X".
Specifically,

PZ | X))
>oxy PZ | X))

where p(Z, | X,(V) is the vista mode measurement likeli-
hood defined in (13).

pPXY | Z) = (50)

5.1.2. Guards:

The guards are defined by thresholding the proba-
bilistic object relevancy metric defined above. Specifi-
cally,

A
Gy_a=p(Far, | Z, ) < DPv.a

A
Gy_a=pFar | Z) > pay (5D
where p,y > pya are user-defined probability thresh-
olds.

5.1.3. Transition functions:

Given that the Vista model, by design, reflects only
low fidelity qualitative information about the object
position, it does not have much to offer the continuous
metrical Action model in terms of a transition function;
therefore, at the V—A transition, the Action model
is initialized directly from the lidar scan. Specifically,
the inverse Wishart parameters of the extent model
distribution are computed as:

1
T, =—3,

Z
ny

a, =1t (52)

where X, is defined in (36), and nj is the number of
measurement returns at time k. The Gaussian parameters
of the state distribution are computed as:
- Z?
- €20
—x
: €20
__yg’k
LR, 0
7™ Y2x2
PkA = | % )

Xp =

(33)

A
L 02><2 PVO

where Z{ and R, are the mean and covariance of the
Action space centroid measurement, defined in (28) and
(30), respectively, and P‘{}O is set to a large diagonal ma-
trix reflecting the large amount of uncertainty in the
velocity initialization. Note that the velocity state ini-
tialization is naive in assuming the object is static in
the global reference frame. However, the linear prop-
erties of the dynamics and measurement model in (22)
and (28) allow for a quick estimate convergence from a
potentially poor initialization, as demonstrated in the re-
sults section. More elaborate initialization schemes can
be implemented without loss of generality.

220

At the V«A transition, the Vista model is initialized
from (50), which was already computed to evaluate the
guard, Gy_,, in (51).

5.2. Action < Personal

5.2.1. Probabilistic object relevancy metric:

For the autonomous driving example, the relevancy
metric governing the transitions among Action and Per-
sonal modes is chosen as the anticipated probability of
collision with the object over a defined time horizon, £,
PCrxsn | Z,4). The anticipated probability of collision,
PCrisn | Z14), is taken as the maximum instantaneous
collision probability over each time step in the hori-
zon, h:

PCrprn | Z1y) = fen}ax [(P(Crio | Z14)] (54)

{11}

Conceptually, the instantaneous collision probabilities,
PCrio | Z14) YVl e{1,...,h}, are computed as the prob-
ability that the space occupied by the object intersects
that of the ego vehicle at each future instant, k + /. As
demonstrated in Fig. 5, mathematically this is equivalent
to the probability that the ego-vehicle centroid (i.e. the
origin of the tracking coordinate frame) lies within the
anticipated collision region, O, ,, defined as the dilation
of the uncertain object extent at time k + ¢ by the known
ego vehicle extent.

Thus the anticipated instantaneous collision proba-
bility is calculated as:

_ 1 /ymin \Tp—1 D_min
p(ck+f | Zlik) - exp(_E(DOk-H‘\k) PD;;‘;" o O+
el

(35)

where:
min

Ok (56)

min
NN( Ok“’[‘k,PDg;:z\k)
is the vector from the ego vehicle to the closest point
in the collision region, O,_,, the mean and covariance
of which can be computed using the sigma point trans-
form [22].

In the simplest case, object state anticipation over
the time horizon is accomplished by iterating over the
usual filter prediction step. However, for highly dy-
namic scenes or large time horizons, the state uncer-
tainty can quickly explode to produce an uninformative
belief. In these cases, it is recommended to leverage
more intelligent, specialized anticipation methods that
integrate advanced features such as traffic lane follow-
ing controllers, traffic laws, etc. [16], [17].

5.2.2. Guards:

The guards are defined by thresholding the proba-
bilistic object relevancy metric defined above. Specifi-
cally,

A
Gp_p=PCrpsn | Zig) = Pap

A
Gacp=PCrpsn | Z14) < Ppa (57)
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Fig. 5. Demonstration of the instantaneous collision probability
calculation for an object in Action space. Top: Belief of the elliptical
object extent at time k. Right: Anticipated belief of the elliptical
object extent at time k + (. Bottom: Probability of collision. Note
that the ego-vehicle centroid was swept over the space to generate
the probability contours for demonstration purposes, however, in
practice, the collision probability only needs to be evaluated at the
ego vehicle centroid labeled EGO in the figure.

where p,p > ppa are user-defined probability thresh-
olds.

5.2.3. Transition functions:
Given the similarity of the state representations in
(14) and (37), the state transition functions for A—P is:

_ XA
XP — k :|
=1
P O
Ol><4 €

where ¢ is a small positive number indicating perfect
knowledge of the initial relative orientation, ¢, while
maintaining the positive definite requirement of PY;
since the extent models do not identify the front of
the object, ¢, is defined as the orientation relative to
some arbitrary initialization, and thus can be initialized
with absolute certainty to any numerical value. The
distribution over the object extent in Personal space,
(X, | Z,..), is initialized from the current lidar scan
returned from the object via (38).
The state transition function from A<P is de-

fined as:

XA =XP(1:4)

P} =Pl(1:4,1:4) (59)

and the inverse Wishart parameters of the distribution
over the object extent are initialized from the lidar scan
as in (52).

5.3. Invariants

For the autonomous driving example, the invariants
are chosen such that as a guard enables a transition
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between two modes, the invariant for the source mode
1s violated, and the invariant for the destination mode is
satisfied. Specifically:

A
Iy =p(Far, [ Z,) > pay

A
[, =(p(Far, | Z,;) < pya)O...
(PCrpsn | Z14) < Pap)

A
Ip=ppa < PCrrin | Z1a) (60)
In this way, deterministic transitions are triggered as
soon the guard is satisfied.

6. SIMULATION RESULTS

To demonstrate the ability of the proposed priority-
based framework in Fig. 3 to automatically trade com-
putation for tracking precision as a function of object
relevance, the framework, as parameterized in Sections
4 and 5 for the autonomous driving example, is evalu-
ated over the two simulated scenarios depicted in Figs.
6 and 7. The scenario depicted in Fig. 6 involves a star
shaped object maneuvering with continuously variable
orientation and velocity along a spiral trajectory cen-
tered on the stationary ego vehicle; this scenario is in-
tended to represent a somewhat arbitrary, unstructured,
and challenging tracking application. The scenario de-
picted in Fig. 7 represents a common autonomous driv-
ing scenario in which the ego-vehicle and object (mod-
eled as rectangles) pass each other with less than 0.5 m
clearance in a four-way controlled intersection. The ve-
hicles initially approach the intersection at a constant
cruising speed of 12 m/s (= 26.8 mph), decelerate to
a full stop at the edge of the intersection, pause for
3 s, then accelerate straight through the intersection un-
til they reach their initial cruising speed.

Data is simulated for a 360° field-of-view planar
lidar firing at 12.5 Hz with 0.5° bearing resolution, fixed
to the centroid of the ego vehicle. Random sensor noise
is sampled independently for each beam in each scan
from A(0,1 cm?) and added to the lidar range returns
to simulate the accuracy of realistic lidar sensors. The
filter parameters used for both simulations are defined
in Table III. All simulations were coded in Matlab with
all feature accelerators and code optimizers turned off,
and run on a single thread of an Intel® Core™ 17-4770
CPU @ 3.40 GHz. Given that the code is written in an
interpreted language and has not been optimized, only
discussion about relative computational effort among
the tracker modes is meaningful.

For this evaluation, precision, "7, is defined as:

W= AN p(X, | Zy0).m)

where A(p(X, | Z,,),n) denotes the expected value of
the area enclosed by the n— o confidence bound. To
obtain a fair comparison with objects in Vista space,

(61)
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Fig. 6. Simulated scenario of a star shaped object spiraling in
toward the ego-vehicle and then back out over a period of 40 s; 13
time steps are shown.

Fig. 7. Simulated scenario of a rectangular object passing the ego
vehicle head-on in close proximity at an intersection; three time
steps are shown.

TABLE III
Hybrid tracking parameters

Mode
Transitions Vista Action Personal
Pva 0.45 D 30 m T 60 s
Pay 0.55 2 0.2
Pap 0.5 Poa 0.1
Ppa 0.1 = 0.01
h 1s

the object position belief is taken to be uniformly dis-
tributed over the qualitative region represented by the
state, and the n — o confidence bound is interpreted as
the area required to enclose the same probability, p(n),
as the n — o confidence bound of a Gaussian, where
n — o refers to the Mahalanobis distance from the mean
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of the distribution:

n?
p(n) =1—exp <7> (62)
Specifically, for the discrete abstraction in Fig. 4:
E[p2 — p?
_ pn) -7 M if Vista
A(p(Xy | Z11),n) =
n* e [P 0therwis6e3
(63)

where p; and p, denote the inner and outer radii of the
qualitative regions associated with the Vista states. The
expected value in the numerator of the Vista case of
(63) becomes:

E[p2 —p?1 = p(X, €Far | Z, ;) Py -
—[2-p(X; €Far | Z,,) —1]-p* (64)

where p,,,, denotes the maximum range of the sensor,
p(Far | Z,..) is defined in (49). Note that the expression
in (64) reflects that ‘Far’ states in Vista space are
bounded at the sensor range, p,., =80 m; while this
is not technically an attribute of the abstraction in Fig.
4, it is a sensible bound to avoid infinite area (and
infinitesimal precision) given that, inherent in the event
that the object returns a sensor measurement, is the fact
that the object must be within the range of the sensor.
For the purposes of this evaluation, computational
effort, €, is defined as the clock time required to com-
pute each filter recursion, 6t normalized by the

g : ” computation®
filter time step dictated by the sensor frequency, fi.pcor:
€& = &computation : fsensor (65)

Figs. 8 and 9 demonstrate the tracking performance
for the star and intersection scenarios, respectively, by
comparing the maximum-a-posteriori (MAP) velocity
estimates to the simulated truth values. In both sce-
narios, the filter appears inconsistent (under-confident)
when in Action space, i.e. it is overestimating the filter
uncertainty. This is an artifact of some over-simplifying
assumptions in the object extent model limiting the
amount of information that can be extracted from the
lidar scan. Specifically, despite the centimeter-level pre-
cision of the lidar sensor, the measurement model in
(29) reflects the naive and highly uncertain expectation
that the origin of each lidar return is the centroid of
the elliptical extent; a direct consequence of the extent
model lacking a concept of object surface. Note that
this naiveté is also a subtle but critical feature enabling
the random matrix approach (Action space) to be com-
putationally simple and efficient while simultaneously
remaining flexible and robust in tracking objects from
a variety of classes and applications. This measurement
origin uncertainty is reflected in the measurement noise
model of (30), which scales directly with the size of
the object extent, and is ultimately the source of the
degraded tracking precision in Action space.
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Fig. 8. Performance in tracking the velocity states for the star
scenario: Left: MAP estimates overlaid on ground truth, Right:
tracking error and 1 — o bounds. Note that there is not a concept of
velocity in Vista space.
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Fig. 9. Performance in tracking the velocity states for the
intersection scenario: Left: MAP estimates overlaid on ground truth,
Right: tracking error and 1 — o bounds. Note that there is not a
concept of velocity in Vista space.

Also apparent in Figs. 8 and 9 is that, as objects
approach the ego vehicle, the likelihood that the ego-
vehicle may interact with the object increases and the
tracker transitions to Personal mode. This transition trig-
gers a dramatic improvement in the estimate uncertainty,
which is a critical feature enabling the ego vehicle to
safely maneuver in close proximity with uncooperative
dynamic objects. In both scenarios, the filter quickly re-
covers from the naive velocity initialization defined in
(53) within two time steps (0.16 s) of the filter transition
from Vista to Action mode. Further, the filter seamlessly
transitions between Action and Personal modes in both
directions, mitigating the need for elaborate initializa-
tion schemes; a direct consequence of the synergy be-
tween models.

Figs. 10 and 11 plot the precision, ¢ defined in (61),
and computational effort, + defined in (65), over time,
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Fig. 10. Computational effort, €, and precision, 7, as a function of
time (left) and range to the closest point on the object (right) for the
star scenario.
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Fig. 11. Computational effort, ¢, and precision, 7, as a function of

time (left) and range to the closest point on the object (right) for the
intersection scenario.

TABLE IV
Efficiency vs. Precision

Vista Action Personal
Mean Effort, ¢ 0.01203 0.02180 0.03653
% of max Effort 32.9% 59.7% 100%
Mean Precision, v 0.00126 0.04257 0.52372
% of max precision 0.24% 8.1% 100%

for both the star and intersection scenarios, respectively;
the combined summary of these metrics is provided in
Table IV. Baseline refers to a tracker that operates solely
in Personal mode to emphasize the contribution of the
hybrid framework depicted in Fig. 3. The Personal
model is used for comparison, as it is the only model of
the three that achieves the tracking precision required
for interacting with objects in close proximity—a re-
quirement of many robotics applications, including au-
tonomous driving. As designed, both the computational
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Fig. 12. Probabilistic object relevancy metric trajectories for the
star scenario. Annotations referring to events in the ground truth
scenario are provided for perspective. Top Row: Probability that the
object is ‘Far’ away, governing the transitions between Vista and
Action modes. Bottom Row: Anticipated collision probability for a
h =1 s time horizon, governing the transitions between Action and
Personal modes. Left Column: Variables plotted against time. Right
Column: Variables plotted against distance to the closest point on
the object.

effort and the tracking precision increase as the filter
transitions from Vista through Action to Personal mode,
and the reciprocal trend exists for transitions in the op-
posite direction. Specifically, in terms of computational
effort, roughly 3 objects can be tracked in Vista mode
for every 2 in Action mode, and every 1 in Personal
mode, at the cost of decreased tracking precision. The
periodic spike in the Personal mode precision for the
star scenario in Fig. 10 is a direct consequence of the
measurement model in (47) reflecting latent character-
istics of the object shape, which invokes a relatively
strong viewpoint-dependence for the state observability
compared to the other tracking modes. This character-
istic is not as apparent in Fig. 11 for the intersection
scenario, due to the relatively simple object shape, and
slow, acyclic, viewpoint changes compared to the star
scenario; however, it is briefly apparent as the vehicles
pass each other in close proximity at t ~ 13 s, when the
viewpoint is changing most rapidly.

Lastly, Figs. 12 and 13 demonstrate the trajectories
of the probabilistic object relevancy metrics for both
scenarios. The flat region in the bottom left of Fig. 13
in the approximate range, 5.5 s<t < 8.5 s, corresponds
to the 3 second pause of both vehicles before proceeding
through the intersection. Notice that, while range to the
closest point on the object inherently factors into the
collision probability, it is not an accurate predictor in
itself. This is most apparent in the bottom right of Fig.
13, in that the collision probability is strictly higher as
the vehicles approach each other at the center of the
intersection (portion of the curve labeled ‘On coming’
in Fig. 13) than it is after they depart the intersection in
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Fig. 13. Probabilistic object relevancy metric trajectories for the
intersection scenario. Annotations referring to events in the ground
truth scenario are provided for perspective. Top Row: Probability
that the object is ‘Far’ away, governing the transitions between Vista
and Action modes. Bottom Row: Anticipated collision probability
for a h = 1 s time horizon, governing the transitions between Action
and Personal modes. Left Column: Variables plotted against time.
Right Column: Variables plotted against distance to the closest point
on the object.

opposing directions (portion of the curve labeled ‘Out
going’ in Fig. 13). This is a direct result of the antic-
ipatory nature of the collision probability. Specifically,
as the vehicles approach, the algorithm anticipates that
the distance between them continues to narrow, increas-
ing the likelihood of an impending collision; conversely,
as the vehicles depart, the algorithm anticipates that the
distance between the objects continues to grow, decreas-
ing the likelihood of an impending collision. This char-
acteristic is not as apparent in Fig. 12 due to the spiral
object trajectory. Specifically, given that the object ap-
proaches the ego vehicle without ever driving directly
at it, the anticipation routine predicts that this behavior
continues, and the probability of impending collision is
relatively small until the object is within approximately
3 m of the ego vehicle. Given this attribute, and the ex-
act symmetry of the spiral trajectory about ¢ = 20 s, the
minor asymmetries in the collision probability in Fig. 12
(bottom) can be predominately attributed to the increase
in the precision of the state belief in the latter half of
the scenario (labeled ‘Sprial Out’ in Fig. 12)—a direct
consequence of the hybrid mode transition to Personal
space.

7. CONCLUSION

Inspired by human perception, this paper introduces
a novel method to dynamically allocate algorithmic and
computational resources to achieve variable precision
tracking of extended objects. Many sensible extended
object tracking (EOT) methods exist, with the main dis-
tinction being the model chosen to represent the object
extent. In general, simple extent models result in com-
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putationally efficient EOT, but engender low precision
tracking by way of imprecise sensor models (i.e. large
measurement source uncertainty); conversely, detailed
and complex extent models tend to be computationally
expensive, but engender high precision tracking by en-
abling complementary detailed and precise sensor mod-
els.

With the assertion that objects in a given scene are
often of variable importance to the consumer of the
tracker output, a priority-based tracking framework is
proposed, enabling objects of critical importance to the
consumer to be tracked with relatively expensive, high
precision methods, and objects of peripheral importance
to be tracked with relatively efficient, low precision
methods. The proposed priority-based framework is
a direct analog to the human perception concepts of
attention and focus.

The priority-based EOT framework is parameter-
ized for an example autonomous vehicle application in
which the consumer of the tracking output is an an-
ticipatory planner. Probabilistic object relevancy met-
rics are derived to convey the priority of an object to
the consumer, and inform mode transitions in the hy-
brid model implementation of the priority-based EOT
framework. Simulation results for two different scenar-
ios are presented and compared to a baseline high pre-
cision EOT algorithm. The results demonstrate that the
priority-based framework enables a significant compu-
tational savings by relaxing its precision requirements
for objects deemed to be of peripheral importance, while
maintaining high precision tracks for objects regarded
as essential to the consumer (i.e. the anticipatory plan-
ner).

APPENDIX A KALMAN FILTER
This section provides the Kalman filter prediction

and update equations [4], [11], [33].

A.1. Prediction

Given a stochastic linear vector differential equation
model the form:

Xk =F.X, +GW,
W, ~ N(W,.Qp) (66)

describing the object dynamics, and a Gaussian belief
of the posterior object state at time k — 1,

Py | Zyyo) :N(ik—l\k—l’Pk—l\k—l) (67)

the Gaussian prior distribution at time k is obtained by
predicting the posterior at k — 1 over the time interval 6z:

PXy | Zyyy) = N()_(k\k—l,Pk\k—l) (68)
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where the mean and covariance are computed using the
following equations:

—_ k .
Pk\k—l = q’kflpk—l\k—lqﬁ{fl + T (Qy - 6t)rkal
(69)
where:

k k
P, =/ Fdt, and T,_, =/ G,dt (70)
k=1 k—1

)_(k‘k_l, ®, |, and I',_, are computed using numerical
integration techniques, such as Runge-Kutta.

A.2.

Given that the object state, X, and measurement, Z,
are jointly Gaussian:

PXZy | Zy g 1) =
N( X1 I;k\k—I’ Pmm}) an
PXk\k— 1Zk? PZk

where X, ,_, and P, _, are the mean and covariance of

Update

B

Z

the prior state distribution computed in (69), and Z,, sz s
and PXk‘k,IZk are the measurement mean, covariance, and
state-measurement covariance derived from the partic-
ular sensor model. Then, the posterior distribution over
the object state conditioned on the measurement is also
Gaussian:

P Z1) = NXo ) (72)
with parameters computed as:

)_(k\k = }_(k\kfl + K (Z, — Z)

P =Py — KszkK/{ (73)

where R, is the measurement noise covariance provided
by the sensor specification, and the Kalman gain, K, is
defined as:

K, =Py, 7P (74)
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